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Introduction to Latent Class Analysis (LCA) with Covariates and Distal Outcomes

| have highlighted that LCA is, firstly, a measurement model. Researchers use LCA to make
sense of inter-individual differences and to identify categories or groups (i.e. classes) of
individuals that differ in their propensity to display patterns of behaviour. Most researchers
want to use LCA to identify categories of individuals, and then investigate what explains
these individual differences. Often, they also want to investigate what are the consequences
of individual differences in behaviour patterns. For example, if we identify different latent
classes of individuals with mental health issues, do individuals in these categories vary in
their responses to Cognitive Behavioural Therapy?

A problem that has marred the use of LCA in practice lies in the process of estimating the
measurement model concurrently with covariates or distal outcomes. To illustrate, let’s
consider the example in Figure 1 where we use observed symptoms of depression to
identify different latent classes:
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Figure 1: Schematic example of latent class estimation based on four indicators.

Once we have a satisfactory latent class model that explains heterogeneity in patterns of
symptoms, let’s say we want to test if the estimated latent classes significantly predict the
age of retirement, a variable we collect some years after we had tested our latent class
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model of depression. The most obvious thing would be to estimate the latent classes based
on the four indicators (observed symptoms) and, at the same time, regress distal outcome
“Age at time of retirement” on the latent classes we estimate, as in Figure 2.
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Figure 2: Schematic example of latent class estimated with four indicators and a distal
outcome

Figure 2 may alert you about the main problem in this model: There is nothing that
distinguishes the regression of symptoms of depression on the latent classes from the
regression of the distal outcome on the latent classes. Therefore, if we run the latent class
model in Figure 2 the latent classes will represent individual variation (heterogeneity) in
the symptoms and in the distal outcome.

This causes practical problems: while we had a satisfactory latent class model of depression
when we only included the observed symptoms (as in Figure 1), our latent class
measurement model will be very different when we introduce the distal outcome, as in
Figure 2. Maybe the optimal latent class model in Figure 2 will even have a different number
of classes compared to the measurement model in Figure 1. We will have to re-analyse and
interpret the new model in Figure 2, since this model represents heterogeneity in the
indicators and the distal outcome.

The problems are not just practical, as we also have the problem of interpreting a model
that represents heterogeneity in variables collected on different occasions, where the distal
outcome represents events that may take place years after we had collected information on
the symptoms.
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The same problems arise when we consider covariates that can predict latent class
affiliation (e.g. Gender, and Socio-Economic Status). If we estimated the latent class model
with the observed indicators while, at the same time, including covariates, the latent class
model will represent the heterogeneity in the indicators (symptoms) and the covariates.
Apart from being impractical, this approach is not really answering questions we are posing
about mechanisms leading to differences in behaviour patterns.

Different solutions have been tried to solve this problem. The more naive solution would
be to estimate the latent class measurement model (as in Figure 1) and then consider to
which latent class participants are most likely to belong. The latent classes assignment is
then used as a nominal variable in further analyses: We can investigate the association
between covariates and participants’ class affiliation, or that between latent class affiliation
and distal outcomes. For example, do individuals in different latent classes of depression
retire at significantly different ages?

The main problem with this naive approach is that it does not take into account the
measurement error in latent class membership. The latent class models are probabilistic,
and participants’ assignment to estimated latent classes (their latent class membership) is
uncertain. If we fail to account for this uncertainty and use latent class membership as a
variable in a model, we will obtain biased results. See
http://statmodel.com/download/relatinglca.pdf for a more in-depth discussion.

There are other solutions (e.g. use probability weights for the estimated latent class
affiliations), but the most satisfactory ones are Multiple Pseudo-Class Draws, and the
Three-Step Approach. The following sections introduce these two approaches, which will be

the focus of the two exercises proposed later.

Multiple Pseudo-Class Draws

This approach proposes to control for uncertainty in latent class membership by using a
method akin to multiple imputation of missing data. In fact, after estimating a latent class
model, we can consider each participants’ posterior latent class probabilities and use these
to create multiple datasets (e.g. n = 100) where each participant is randomly assigned to
latent classes based on these posterior probabilities. Therefore, in these multiple datasets,
the random draws will provide a set of plausible values of latent class membership, but at
the same time representing the uncertainty about this membership.

Once these datasets have been created, the latent class draws can be used as a variable in
regression analyses by combining these analyses using Rubin’s procedure and the same
rules derived for multiple imputation of missing data.


http://statmodel.com/download/relatinglca.pdf
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Mplus facilitates the application of this approach through syntax. In fact, predictors of latent
class membership can be specified in the VARIABLE: command as “Auxiliary” variables. For
example, if we wanted to include gender, or better, a dummy-variable indicating gender
male, and dummy-coded variables representing Socio-Economic Status quintiles, we would
indicate as “Auxiliary” variables in this way:

VARIABLES:

NAMES: id mood anhedonia sleep fatigue male ses1 ses2 ses3 ses4 ses5 ageretir;
USEVAR = mood anhedonia sleep fatigue;

CATEGORICAL = mood anhedonia sleep fatigue;

MISSING = all (-999);

CLASSES= depress(2);

AUXILIARY= male (R) ses2-ses5 (R);

The command AUXILIARY= together with the (R) following the variable names instructs
Mplus to consider these variables as predictors of latent classes in multinomial logistic
regressions, where the categorical latent classes are estimated using posterior probability-
based multiple imputations (pseudo-class draws).

Note the use of dummy-coded variables: the SES variable has 5 levels (i.e. 5 quintiles), and
each of these levels is represented by dummy variables where individuals in quintile 1
received score=1 in varible sesl and those in other quintiles receive score=0, and so on,
until we have 5 dummy variables for each quintile: sesl, ses2, ses3, ses4, ses5. By omitting
one of these variables (sesl1 in the example above) we are instructing the software to
consider the omitted variable as a reference category for comparisons. The multinomial
logistic regression will therefore represent the changes in the probability of being in
different classes for individuals in SES quintile 2, 3, etc. when compared to individuals in SES
quintile 1.

In order to test the association between latent classes and a distal outcome, we can use the
AUXILIARY= option in VARIABLE: with a different notation:

VARIABLES:

NAMES: id mood anhedonia sleep fatigue male sesl ses2 ses3 ses4 ses5 ageretir;
USEVAR = mood anhedonia sleep fatigue;

CATEGORICAL = mood anhedonia sleep fatigue;

MISSING = all (-999);

CLASSES= depress(2);

AUXILIARY= ageretir(E);
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The last line in the box above instructs Mplus to test the null hypothesis of equal means in
variable ageretir (Age at time of retirement) across the latent classes estimated using
posterior probability-based multiple imputations (pseudo-class draws).

Note that it is not possible to specify auxiliary some variables as predictors (R) and other as
distal outcomes (E) at the same time in the AUXILIARY= option.

The Three-Step Approach: Introduction

This approach has been more recently developed. The solution to the problem of including
covariates and distal outcomes lies in conducting the measurement model and the
modelling of structural relationships (e.g. regressing latent classes on covariates) in separate
steps (respectively the first and the third steps of this procedure). An intermediate step links
the other two steps by estimating measurement error in class assignment, thus allowing to
control for this error when imposing structural relationships between other variables and
the latent classes estimated.

I will illustrate these steps with a practical example.

e Step 1: Estimate the Optimal Model and Assign Individuals to the Most
Likely Class (Modal Class)

Let’s assume we have estimated two latent classes based on the frequency of Depression
symptoms. The output of the model will provide posterior probabilities of being in each of
these two classes, with the “most likely” latent class membership for each individual, see

Figure 3.
ID Low Anhedonia | Sleep Fatigue p Classl | pClass2 | Most
Mood probs. likely
class
101 1 1 2 1 .043 .957 2
102 3 3 2 3 .969 .031 1
103 1 2 1 1 .099 .901 2
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104 2 1 3 2 424 .576 2

Figure 3: Fictional example of data representing frequency of symptoms (higher value=more
frequent), probability of membership in two latent classes, and the most likely class (Latent
Class Modal Assignment).

The most likely class to which each individual is assigned will be used in Step 3 as a nominal
variable to estimate class membership while controlling for uncertainty in this membership,
as | will illustrate in Step 3. Before that, | will explain the necessary steps to obtain estimates
of uncertainty in latent class estimation.

e Step 2: Estimate measurement error (i.e. uncertainty in class
allocation)

As highlighted in other occasions, these posterior probabilities indicate the level of
uncertainty in class membership. For example, while membership into Class 1 appears more
certain for ID=102, membership into Class 2 for ID=104 appears quite uncertain.

We can use these probabilities to calculate the average probability of being in each class if
the most likely class is 1 or 2. Considering the example in Figure 3, the average probability
of being in latent Class 2 if the most likely class=2 will be given by:

0.957 + 0.901 + 0.576
3

That is, the probability of being in latent Class 2 for IDs 101, 103, and 104, who are most
likely in latent Class 2.

In the same way, we can calculate all the others average probabilities of being in class 1 or 2
if the most likely class is 1 or 2. These average probabilities can then be reported in Table
like the one in Figure 4.

| Cassi | Cass2 | N___

Class 1 0.924 0.076 3,472
Class 2 0.054 0.946 5,449

Figure 4: Average Latent Class Probabilities for Most Likely Latent Class Membership (Rows)
by Latent Class (Columns)
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For example, the first cell in the table in Figure 4 represents the average probability of being
in latent Class 1 if the most likely latent Class = 1 (0.924). The Ns in the last columns
represent the number of participants who, in this fictional example, have been assigned to
latent Class 1 and latent Class 2, respectively.

Taking the table in Figure 4 as a reference, we can then calculate the classification
probabilities for the most likely latent class membership by latent class. For example, the
classification probability when the most likely class membership is Class 1 and individuals
are classified in latent class 1 will be equal to:

(0.924 * 3,472)

=0.916
(0.924 % 3,472) + (0.054 x 5,449)

Namely, this classification probability is equal to the product of the average probability of
being in Class 1 when the most likely class=1 by the number of individuals whose most likely
class=1, divided by the sum of the latter product and the product of the average probability
of being in Class 1 when the most likely class=2 by the number of individuals whose most
likely class=2.

In the same way, we can calculate the other classification probabilities, which we can then
report in another table, see Figure 5:
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| Cassl | Class2

Class 1 0.916 0.084
Class 2 0.049 0.951

Figure 5: Classification Probabilities for the Most Likely Latent Class Membership (Rows)by
Latent Class (Columns).

Now we can use these classification probabilities to calculate the logit ratios of being in
Class 1 rather than Class 2 when the most likely class=1:

<0.916
n

= 2.
0.084> 389
Similarly, we can calculate the logit odds of being in Class 1 rather than in Class 2 when the

most likely class=2:

(0.049
n

0.951) = —2.972

e Step 3: Impose structural relationships between classes and
covariates/distal outcomes, while controlling for measurement error in
class assignment

In this final step we use the information from Step 1 (i.e. the most likely class membership
of each participant) and from Step 2 (i.e. the measurement error expressed by the logits for
classification probabilities) to create a latent class model that is defined by these estimated
values. In other words, the latent class model is fixed to these values that reflect the
uncertainty in latent class membership, and we can therefore add covariates and distal
outcomes without re-estimating the latent class model. In Figure 6 the 3™ step in this
approach is represented schematically.

Figure 6 highlights that the association between the most likely class and the latent class is
fixed at the measurement error parameters estimated in Step 2: therefore the latent class
model is given and will not change.
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Figure 6: Schematic representation of Step 3 in the Three-Step Approach.

The Three-Step Approach in Mplus

The Three-Step Approach is facilitated in Mplus by the fact that the logit odds that are used
to fix the measurement parameters in the 3" step are readily available in the Mplus Output

when running latent class models.
e Step1l

The first step is to estimate the latent class model. If, for example, after initial analyses the
optimal model for the data appears to be a model with 2 latent classes, estimate this model
ensuring that a data file is saved that includes the posterior latent class probabilities and the
most likely class membership for each participant.

To this aim, add SAVEDATA: command in the INPUT file. For example:

SAVEDATA:

FILE= twoclasses.dat;
SAVE=cprob;
MISSFLAG=-999;

The options above indicate the name of the datafile that will be created when Mplus runs
the model (“twoclasses.dat”). Note that you can also specify the path where you want to

save this file, e.g.: FILE= “C:\DESKTOP\ twoclasses.dat”; You can also save the datafile in
other text-based formats (e.g. .txt).



Introduction to LCA with covariates and distal outcomes ; Dr O Perra; IntroLCA 10

The option SAVE=cprob; ensures that the datafile created will include the posterior
probabilities of latent class membership, as well as the most likely class of each participant
(as long as the participant has valid data for at least one of the indicators).

The option MISSFLAG= -999; instructs Mplus to assign value -999 to cells with missing data.

To ensure this datafile can also be match-merged with other datafiles for checks and other
uses, make sure you also save the participants IDs in the datafile created by Mplus. To this
end, include the ID variable in the VARIABLE: command using the option IDVAR=, as in the
example below:

VARIABLES:

NAMES= id mood anhedonia sleep fatigue male sesl ses2 ses3 ses4 ses5 ageretir;
USEVAR = mood anhedonia sleep fatigue;

CATEGORICAL = mood anhedonia sleep fatigue;

MISSING = all (-999);

CLASSES= depress(2);

IDVAR=id;

Since the datafile that Mplus will produce after this model estimation will include the most
likely class membership, which will be used in the 3 step of the analysis, it would be useful
to also ensure that covariates and distal outcomes are saved in the datafile. We can do this
by adding option AUXILIARY= and the name of the variables we want to transfer in the
datafile that Mplus will create:

VARIABLES:

NAMES= id mood anhedonia sleep fatigue male ses1 ses2 ses3 ses4 ses5 ageretir;
USEVAR = mood anhedonia sleep fatigue;

CATEGORICAL = mood anhedonia sleep fatigue;

MISSING = all (-999);

CLASSES= depress(2);

IDVAR=id;

AUXILIARY= male sesl ses2 ses3 ses4 ses5 ageretir;

The last line in the box above ensures that variables listed after AUXILIARY= will not be
included in model estimation, but will be saved in the datafile we will create using command
SAVEDATA:

After estimating the model, the Mplus OUTPUT will provide information about the datafile it
created:
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SLVEDATR INFOEMATICH

Save file
twoclasses.dat

Order and format of wvariables

MCOoD F10.3
ANHEDONT F10.3
SLEEFP F10.3
FATIGUE F10.3
IDn Fg.0
MALE F10.3
SES1 F10.3
SESZ F10.3
SES3 F10.3
SES4 F10.3
SESS F10.3
AGERETIR F10.3
CPRCEL F10.3
CPRCBZ F10.3
DEPEES F10.3

Save file format
4F10.3 F8.0 1l0OF10.3

Save file record length 10000

The variable CPROB1 and CPROB2 are the probabilities of membership in latent class 1 and
in latent class 2 respectively, and the variable DEPRESS represents the most likely class
membership for each participant. Note that “depresss” is the name | gave to the latent class
variable after the VARIABLE: command: you can give your latent class variable any name
(within Mplus rules, e.g. names should not exceed 8 characters).

e Step2

In this step we estimate measurement errors in latent class membership for the model we
estimated in Step 1. Mplus facilitates this task by providing in the OUTPUT file tables with
the average latent class probabilities, classification probabilities and, crucially, the logits for
the classification probabilities.

In the example of the 2-class model estimated in Step 1, we obtain a table such as this in the
OUTPUT file:
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Logits for the Classification Probkakilities for the Most Likely Latent Class Membership (Row)
by Latent Class (Column)

We can use these logits as measurement errors in latent class affiliation in Step 3.
o Step3

In this step we will use the datafile we obtained in Step 1:

SLVEDATR INFORMATICH

Save file
twoclasses.dat

Order and format of wvariables

MCOoD F10.3
ANHEDONT F10.3
SLEEF F10.3
FATIGUE F10.3
IDn Fg.0
MALE F10.3
SE51 F10.3
SES5Z2 F10.3
SES3 F10.3
SE54 F10.3
SE55 F10.3
AGERETIR F10.3
CPRCEBL F10.3
CPROBZ F10.3
DEFEES F10.3

Save file format
4F10.3 F8.0 1l0OF10.3

Save file record length 10000

The variable file name and variable names are those that Mplus indicated, so we will write a
similar INPUT file:

DATA:
FILE= twoclasses.dat ;

VARIABLES:
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NAMES= mood anhedonia sleep fatigue id male sesl ses2 ses3 ses4 ses5 ageretir cprob2
cprob2 depress;

USEVAR = depress male ses2 ses3 ses4 ses5;
NOMINAL = depress;

MISSING = all (-999);

CLASSES= newcl(2);

Note that the order of the variables must follow exactly the order in which Mplus put these
variables in the datafile.

In the VARIABLE: command, we will define the variable depresss as a nominal variable. This
is the variable that represents the most likely class membership for each participant. This
variable is then used to estimate latent class membership in a new latent class variable with
2 classes, newcl, specified in CLASSES= newcl(2);

To ensure the association between the most likely class (variable depress) and the newcl
variable is fixed according to the measurement error estimated in Step 2, we will fix the
association between the indicator depress and newcl in the MODEL: command in this way:

MODEL:
%OVERALL%
newcl ON male ses2 ses3 ses4 ses5;

%newcl#1%
[depress#l @ 2.295];
%newcl#2%
[depress#l @ -2.775];

Remember that the %OVERALL% statement in MODEL: specifies the part of the model that
concerns all latent classes. In the box above, we are instructing Mplus to estimate the
multinomial regression of latent classes newcl on covariates male and SES (through the use
of dummy variables ses2, etc.).

The %newcl#1% statement concerns just class 1 of the latent variable newcl. The statement
[depress#l @ 2.295]; is fixing the measurement relationship between the nominal most
likely class variable depress and latent class newcl to the level of uncertainty determined in
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Step 2. This is effectively fixing the estimation of latent class to the measurement error
determined in Step 2, therefore avoiding a new estimation of the latent class measurement
model.

Because of that, when running Step 3, the STARTS= option in command ANALYSIS: should
be set to 0. This avoids re-estimating the measurement model, since the model has been
fixed to the level of uncertainty determined in Step 2. Thus, the ANALYSIS: command should
state:

ANALYSIS:
TYPE=MIXTURE;
STARTS=0;

Putting all this together, Mplus will run multinomial regression models where latent class
affiliation into Class 1 or Class 2 is regressed on the covariates, and the latent class affiliation
is represented with the uncertainty.

In Step 3 it is also possible to estimate the association between latent classes and distal
outcomes such as ageretir (Age at time of retirement). Since this variable is continuous, we
can estimate the average value of this variable across the two latent classes estimated:

DATA:
FILE= twoclasses.dat ;

VARIABLES:
NAMES= mood anhedonia sleep fatigue id male sesl ses2 ses3 ses4 ses5 ageretir cprob2
cprob2 depress;
USEVAR = depress male ses2 ses3 ses4 ses5 ageretir;
NOMINAL = depress;
MISSING = all (-999);
CLASSES= newcl(2);

ANALYSIS:
TYPE=MIXTURE;
STARTS=0;

MODEL:
%OVERALL%
newcl ON male ses2 ses3 ses4 ses5;
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%newcl#1%
[depress#l @ 2.295];
[ageretir] (p1);

%newcl#2%
[depress#l @ -2.775];
[ageretir] (p2);

MODEL TEST:
pl=p2;

The statements [ageretir] in %newcl#1% and %newcl#2% ask Mplus to estimate the
average value of ageretir for latent class 1 and latent class 2 respectively. By adding a name
(p1) and (p2) for these two estimated means, we can use the MODEL TEST: command to
invoke a Wald test testing the null hypothesis that the mean of ageretir for latent class 1
(which we labelled p1) is equal to the mean of ageretir for latent class 2. If the p value of the
test is <.05, we can reject the null hypothesis and accept pl # p2. In a similar way, we can
also free the variances of the distal outcome to differ across classes, and test hypotheses
concerning them.



