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Introduction to Latent Class Analysis (LCA) with Covariates and Distal Outcomes 

 

 

I have highlighted that LCA is, firstly, a measurement model. Researchers use LCA  to make 

sense of inter-individual differences and to identify categories or groups (i.e. classes) of 

individuals that differ in their propensity to display patterns of behaviour. Most researchers 

want to use LCA to identify categories of individuals, and then investigate what explains 

these individual differences. Often, they also want to investigate what are the consequences 

of individual differences in behaviour patterns. For example, if we identify different latent 

classes of individuals with mental health issues, do individuals in these categories vary in 

their responses to Cognitive Behavioural Therapy?  

A problem that has marred the use of LCA in practice lies in the process of estimating the 

measurement model concurrently with covariates or distal outcomes. To illustrate, let’s 

consider the example in Figure 1 where we use observed symptoms of depression to 

identify different latent classes: 

 

 

Figure 1: Schematic example of latent class estimation based on four indicators. 

Once we have a satisfactory latent class model that explains heterogeneity in patterns of 

symptoms, let’s say we want to test if the estimated latent classes significantly predict the 

age of retirement, a variable we collect some years after we had tested our latent class 
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model of depression. The most obvious thing would be to estimate the latent classes based 

on the four indicators (observed symptoms) and, at the same time, regress distal outcome 

“Age at time of retirement” on the latent classes we estimate, as in Figure 2.  

 

 

 

 

 

 

 

 

 

 

Figure 2: Schematic example of latent class estimated with four indicators and a distal 

outcome 

 

Figure 2 may alert you about the main problem in this model: There is nothing that 

distinguishes the regression of symptoms of depression on the latent classes from the 

regression of the distal outcome on the latent classes. Therefore, if we run the latent class 

model in Figure 2 the latent classes will represent individual variation (heterogeneity) in 

the symptoms and in the distal outcome. 

This causes practical problems: while we had a satisfactory latent class model of depression 

when we only included the observed symptoms (as in Figure 1), our latent class 

measurement model will be very different when we introduce the distal outcome, as in 

Figure 2. Maybe the optimal latent class model in Figure 2 will even have a different number 

of classes compared to the measurement model in Figure 1. We will have to re-analyse and 

interpret the new model in Figure 2, since this model represents heterogeneity in the 

indicators and the distal outcome.   

The problems are not just practical, as we also have the problem of interpreting a model 

that represents heterogeneity in variables collected on different occasions, where the distal 

outcome represents events that may take place years after we had collected information on 

the symptoms.  
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The same problems arise when we consider covariates that can predict latent class 

affiliation (e.g. Gender, and Socio-Economic Status). If we estimated the latent class model 

with the observed indicators while, at the same time, including covariates, the latent class 

model will represent the heterogeneity in the indicators (symptoms) and the covariates. 

Apart from being impractical, this approach is not really answering questions we are posing 

about mechanisms leading to differences in behaviour patterns.  

Different solutions have been tried to solve this problem. The more naïve solution would 

be to estimate the latent class measurement model (as in Figure 1) and then consider to 

which latent class participants are most likely to belong. The latent classes assignment is 

then used as a nominal variable in further analyses: We can investigate the association 

between covariates and participants’ class affiliation, or that between latent class affiliation 

and distal outcomes. For example, do individuals in different latent classes of depression 

retire at significantly different ages?  

The main problem with this naïve approach is that it does not take into account the 

measurement error in latent class membership. The latent class models are probabilistic, 

and participants’ assignment to estimated latent classes (their latent class membership) is 

uncertain. If we fail to account for this uncertainty and use latent class membership as a 

variable in a model, we will obtain biased results. See 

http://statmodel.com/download/relatinglca.pdf for a more in-depth discussion.  

There are other solutions (e.g. use probability weights for the estimated latent class 

affiliations), but the most satisfactory ones are Multiple Pseudo-Class Draws, and the 

Three-Step Approach. The following sections introduce these two approaches, which will be 

the focus of the two exercises proposed later. 

Multiple Pseudo-Class Draws 

 

This approach proposes to control for uncertainty in latent class membership by using a 

method akin to multiple imputation of missing data. In fact, after estimating a latent class 

model, we can consider each participants’ posterior latent class probabilities and use these 

to create multiple datasets (e.g. n = 100) where each participant is randomly assigned to 

latent classes based on these posterior probabilities. Therefore, in these multiple datasets, 

the random draws will provide a set of plausible values of latent class membership, but at 

the same time representing the uncertainty about this membership.  

Once these datasets have been created, the latent class draws can be used as a variable in 

regression analyses by combining these analyses using Rubin’s procedure and the same 

rules derived for multiple imputation of missing data.   

http://statmodel.com/download/relatinglca.pdf
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Mplus facilitates the application of this approach through syntax. In fact, predictors of latent 

class membership can be specified in the VARIABLE: command as “Auxiliary” variables. For 

example, if we wanted to include gender, or better, a dummy-variable indicating gender 

male, and dummy-coded variables representing Socio-Economic Status quintiles, we would 

indicate as “Auxiliary” variables in this way: 

VARIABLES: 

NAMES: id mood anhedonia sleep fatigue male ses1 ses2 ses3 ses4 ses5 ageretir; 

USEVAR = mood anhedonia sleep fatigue; 

CATEGORICAL = mood anhedonia sleep fatigue; 

 MISSING = all (-999); 

CLASSES= depress(2); 

AUXILIARY= male (R) ses2-ses5 (R); 

 

 

The command AUXILIARY= together with the (R) following the variable names instructs 

Mplus to consider these variables as predictors of latent classes in multinomial logistic 

regressions, where the categorical latent classes are estimated using posterior probability-

based multiple imputations (pseudo-class draws).  

Note the use of dummy-coded variables: the SES variable has 5 levels (i.e. 5 quintiles), and 

each of these levels is represented by dummy variables where individuals in quintile 1 

received score=1 in varible ses1 and those in other quintiles receive score=0, and so on, 

until we have 5 dummy variables for each quintile: ses1, ses2, ses3, ses4, ses5. By omitting 

one of these variables (ses1 in the example above) we are instructing the software to 

consider the omitted variable as a reference category for comparisons. The multinomial 

logistic regression will therefore represent the changes in the probability of being in 

different classes for individuals in SES quintile 2, 3, etc. when compared to individuals in SES 

quintile 1.  

 

In order to test the association between latent classes and a distal outcome, we can use the 

AUXILIARY= option in VARIABLE: with a different notation: 

VARIABLES: 

NAMES: id mood anhedonia sleep fatigue male ses1 ses2 ses3 ses4 ses5 ageretir; 

USEVAR = mood anhedonia sleep fatigue; 

CATEGORICAL = mood anhedonia sleep fatigue; 

 MISSING = all (-999); 

CLASSES= depress(2); 

AUXILIARY= ageretir(E);  
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The last line in the box above instructs Mplus to test the null hypothesis of equal means in 

variable ageretir (Age at time of retirement) across the latent classes estimated using 

posterior probability-based multiple imputations (pseudo-class draws).  

Note that it is not possible to specify auxiliary some variables as predictors (R) and other as 

distal outcomes (E) at the same time in the AUXILIARY= option.  

 

The Three-Step Approach: Introduction 

 

This approach has been more recently developed. The solution to the problem of including 

covariates and distal outcomes lies in conducting the measurement model and the 

modelling of structural relationships (e.g. regressing latent classes on covariates) in separate 

steps (respectively the first and the third steps of this procedure). An intermediate step links 

the other two steps by estimating measurement error in class assignment, thus allowing to 

control for this error when imposing structural relationships between other variables and 

the latent classes estimated.  

I will illustrate these steps with a practical example. 

 

• Step 1: Estimate the Optimal Model and Assign Individuals to the Most 

Likely Class (Modal Class) 

Let’s assume we have estimated two latent classes based on the frequency of Depression 

symptoms. The output of the model will provide posterior probabilities of being in each of 

these two classes, with the “most likely” latent class membership for each individual, see 

Figure 3. 

 

ID Low 

Mood 

Anhedonia Sleep 

probs. 

Fatigue p Class1 p Class2  Most 

likely 

class 

101 1 1 2 1 .043 .957 2 

102 3 3 2 3 .969 .031 1 

103 1 2 1 1 .099 .901 2 
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104 2 1 3 2 .424 .576 2 

…        

Figure 3: Fictional example of data representing frequency of symptoms (higher value=more 

frequent), probability of membership in two latent classes, and the most likely class (Latent 

Class Modal Assignment).  

The most likely class to which each individual is assigned will be used in Step 3 as a nominal 

variable to estimate class membership while controlling for uncertainty in this membership, 

as I will illustrate in Step 3. Before that, I will explain the necessary steps to obtain estimates 

of uncertainty in latent class estimation.  

 

• Step 2: Estimate measurement error (i.e. uncertainty in class 

allocation) 

As highlighted in other occasions, these posterior probabilities indicate the level of 

uncertainty in class membership. For example, while membership into Class 1 appears more 

certain for ID=102, membership into Class 2 for ID=104 appears quite uncertain.  

We can use these probabilities to calculate the average probability of being in each class if 

the most likely class is 1 or 2. Considering the example in Figure 3, the average probability 

of being in latent Class 2 if the most likely class=2 will be given by: 

0.957 + 0.901 + 0.576

3
 

That is, the probability of being in latent Class 2 for IDs 101, 103, and 104, who are most 

likely in latent Class 2.  

In the same way, we can calculate all the others average probabilities of being in class 1 or 2 

if the most likely class is 1 or 2. These average probabilities can then be reported in Table 

like the one in Figure 4. 

 

Figure 4: Average Latent Class Probabilities for Most Likely Latent Class Membership (Rows) 
by Latent Class (Columns) 
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For example, the first cell in the table in Figure 4 represents the average probability of being 

in latent Class 1 if the most likely latent Class = 1 (0.924). The Ns in the last columns 

represent the number of participants who, in this fictional example, have been assigned to 

latent Class 1 and latent Class 2, respectively.  

Taking the table in Figure 4 as a reference, we can then calculate the classification 

probabilities for the most likely latent class membership by latent class. For example, the 

classification probability when the most likely class membership is Class 1 and individuals 

are classified in latent class 1 will be equal to: 

  
(0.924 ∗ 3,472)

(0.924 ∗ 3,472) + (0.054 ∗ 5,449)
= 0.916 

Namely, this classification probability is equal to the product of the average probability of 

being in Class 1 when the most likely class=1 by the number of individuals whose most likely 

class=1, divided by the sum of the latter product and the product of the average probability 

of being in Class 1 when the most likely class=2 by the number of individuals whose most 

likely class=2.  

In the same way, we can calculate the other classification probabilities, which we can then 

report in another table, see Figure 5: 
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Figure 5: Classification Probabilities for the Most Likely Latent Class Membership (Rows)by 
Latent Class (Columns). 
 
Now we can use these classification probabilities to calculate the logit ratios of being in 
Class 1 rather than Class 2 when the most likely class=1: 
 

 𝑙𝑛 (
0.916

0.084
) = 2.389 

Similarly, we can calculate the logit odds of being in Class 1 rather than in Class 2 when the 
most likely class=2: 
 

𝑙𝑛 (
0.049

0.951
) = −2.972 

 

• Step 3: Impose structural relationships between classes and 

covariates/distal outcomes, while controlling for measurement error in 

class assignment 

In this final step we use the information from Step 1 (i.e. the most likely class membership 
of each participant) and from Step 2 (i.e. the measurement error expressed by the logits for 
classification probabilities) to create a latent class model that is defined by these estimated 
values. In other words, the latent class model is fixed to these values that reflect the 
uncertainty in latent class membership, and we can therefore add covariates and distal 
outcomes without re-estimating the latent class model. In Figure 6 the 3rd step in this 
approach is represented schematically.  
 
Figure 6 highlights that the association between the most likely class and the latent class is 
fixed at the measurement error parameters estimated in Step 2: therefore the latent class 
model is given and will not change.  
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Figure 6: Schematic representation of Step 3 in the Three-Step Approach.  
 

The Three-Step Approach in Mplus 

 

The Three-Step Approach is facilitated in Mplus by the fact that the logit odds that are used 

to fix the measurement parameters in the 3rd step are readily available in the Mplus Output 

when running latent class models.  

• Step 1 

The first step is to estimate the latent class model. If, for example, after initial analyses the 

optimal model for the data appears to be a model with 2 latent classes, estimate this model 

ensuring that a data file is saved that includes the posterior latent class probabilities and the 

most likely class membership for each participant.  

To this aim, add SAVEDATA: command  in the INPUT file. For example: 

SAVEDATA: 

FILE= twoclasses.dat; 

SAVE=cprob; 

MISSFLAG=-999; 

 

The options above indicate the name of the datafile that will be created when Mplus runs 

the model (“twoclasses.dat”). Note that you can also specify the path where you want to 

save this file, e.g.: FILE= “C:\DESKTOP\ twoclasses.dat”;  You can also save the datafile in 

other text-based formats (e.g. .txt).  
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The option SAVE=cprob; ensures that the datafile created will include the posterior 

probabilities of latent class membership, as well as the most likely class of each participant 

(as long as the participant has valid data for at least one of the indicators).  

The option MISSFLAG= -999; instructs Mplus to assign value -999 to cells with missing data.  

To ensure this datafile can also be match-merged with other datafiles for checks and other 

uses, make sure you also save the participants IDs in the datafile created by Mplus.  To this 

end, include the ID variable in the VARIABLE: command using the option IDVAR= , as in the 

example below: 

VARIABLES: 

NAMES= id mood anhedonia sleep fatigue male ses1 ses2 ses3 ses4 ses5 ageretir; 

USEVAR = mood anhedonia sleep fatigue; 

CATEGORICAL = mood anhedonia sleep fatigue; 

 MISSING = all (-999); 

CLASSES= depress(2); 

IDVAR=id;  

 

Since the datafile that Mplus will produce after this model estimation will include the most 

likely class membership, which will be used in the 3rd step of the analysis, it would be useful 

to also ensure that covariates and distal outcomes are saved in the datafile. We can do this 

by adding option AUXILIARY= and the name of the variables we want to transfer in the 

datafile that Mplus will create: 

VARIABLES: 

NAMES= id mood anhedonia sleep fatigue male ses1 ses2 ses3 ses4 ses5 ageretir; 

USEVAR = mood anhedonia sleep fatigue; 

CATEGORICAL = mood anhedonia sleep fatigue; 

 MISSING = all (-999); 

CLASSES= depress(2); 

IDVAR=id;  

AUXILIARY= male ses1 ses2 ses3 ses4 ses5 ageretir; 

 

The last line in the box above ensures that variables listed after AUXILIARY= will not be 

included in model estimation, but will be saved in the datafile we will create using command 

SAVEDATA:  

After estimating the model, the Mplus OUTPUT will provide information about the datafile it 

created: 
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The variable CPROB1 and CPROB2 are the probabilities of membership in latent class 1 and 

in latent class 2 respectively, and the variable DEPRESS represents the most likely class 

membership for each participant. Note that “depresss” is the name I gave to the latent class 

variable after the VARIABLE: command: you can give your latent class variable any name 

(within Mplus rules, e.g. names should not exceed 8 characters).  

 

• Step 2 

In this step we estimate measurement errors in latent class membership for the model we 

estimated in Step 1. Mplus facilitates this task by providing in the OUTPUT file tables with 

the average latent class probabilities, classification probabilities and, crucially, the logits for 

the classification probabilities.  

In the example of the 2-class model estimated in Step 1, we obtain a table such as this in the 

OUTPUT file: 
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We can use these logits as measurement errors in latent class affiliation in Step 3. 

• Step 3 

In this step we will use the datafile we obtained in Step 1: 

 

The variable file name and variable names are those that Mplus indicated, so we will write a 

similar INPUT file: 

 

  DATA: 

FILE= twoclasses.dat ; 

 

VARIABLES: 
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NAMES= mood anhedonia sleep fatigue id male ses1 ses2 ses3 ses4 ses5 ageretir cprob2 

cprob2 depress; 

 

USEVAR = depress male ses2 ses3 ses4 ses5; 

NOMINAL = depress; 

 

MISSING = all (-999); 

 

CLASSES= newcl(2); 

 

Note that the order of the variables must follow exactly the order in which Mplus put these 

variables in the datafile.  

In the VARIABLE: command, we will define the variable depresss as a nominal variable. This 

is the variable that represents the most likely class membership for each participant. This 

variable is then used to estimate latent class membership in a new latent class variable with 

2 classes, newcl, specified in CLASSES= newcl(2); 

To ensure the association between the most likely class (variable depress) and the  newcl 

variable is fixed according to the measurement error estimated in Step 2, we will fix the 

association between the indicator depress and newcl in the MODEL: command in this way: 

 

 MODEL: 

%OVERALL% 

newcl ON male ses2 ses3 ses4 ses5; 

 

%newcl#1% 

[depress#1 @ 2.295]; 

%newcl#2% 

[depress#1 @ -2.775]; 

 

 

Remember that the %OVERALL% statement in MODEL: specifies the part of the model that 

concerns all latent classes. In the box above, we are instructing Mplus to estimate the 

multinomial regression of latent classes newcl on covariates male and SES (through the use 

of dummy variables ses2, etc.).  

The %newcl#1% statement concerns just class 1 of the latent variable newcl. The statement 

[depress#1 @ 2.295]; is fixing the measurement relationship between the nominal most 

likely class variable depress and latent class newcl to the level of uncertainty determined in 
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Step 2. This is effectively fixing the estimation of latent class to the measurement error 

determined in Step 2, therefore avoiding a new estimation of the latent class measurement 

model.  

Because of that, when running Step 3, the STARTS=  option in command ANALYSIS: should 

be set to 0. This avoids re-estimating the measurement model, since the model has been 

fixed to the level of uncertainty determined in Step 2. Thus, the ANALYSIS: command should 

state: 

 

 ANALYSIS: 

TYPE=MIXTURE; 

STARTS=0; 

 

Putting all this together, Mplus will run multinomial regression models where latent class 

affiliation into Class 1 or Class 2 is regressed on the covariates, and the latent class affiliation 

is represented with the uncertainty.  

In Step 3 it is also possible to estimate the association between latent classes and distal 

outcomes such as ageretir (Age at time of retirement). Since this variable is continuous, we 

can estimate the average value of this variable across the two latent classes estimated:  

 

DATA: 

FILE= twoclasses.dat ; 

 

VARIABLES: 

NAMES= mood anhedonia sleep fatigue id male ses1 ses2 ses3 ses4 ses5 ageretir cprob2 

cprob2 depress; 

USEVAR = depress male ses2 ses3 ses4 ses5 ageretir; 

NOMINAL = depress; 

MISSING = all (-999); 

CLASSES= newcl(2); 

 

ANALYSIS: 

TYPE=MIXTURE; 

STARTS=0; 

 

 MODEL: 

%OVERALL% 

newcl ON male ses2 ses3 ses4 ses5; 
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%newcl#1% 

[depress#1 @ 2.295]; 

[ageretir] (p1); 

 

%newcl#2% 

[depress#1 @ -2.775]; 

[ageretir] (p2); 

 

MODEL TEST: 

p1=p2; 

 

 

The statements [ageretir] in %newcl#1% and %newcl#2% ask Mplus to estimate the 

average value of ageretir for latent class 1 and latent class 2 respectively. By adding a name 

(p1) and (p2) for these two estimated means, we can use the MODEL TEST: command to 

invoke a Wald test testing the null hypothesis that the mean of ageretir for latent class 1 

(which we labelled p1) is equal to the mean of ageretir for latent class 2. If the p value of the 

test is <.05, we can reject the null hypothesis and accept p1  p2. In a similar way, we can 

also free the variances of the distal outcome to differ across classes, and test hypotheses 

concerning them.  

 


